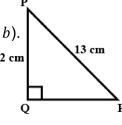
Name: Max Marks : 25

Chapter - Coordinate Geometry, Introduction to Trigonometry


Class - 10

1- Marks

- 1. The distance of point P(4, -3) from the origin is.
- 2. Write the section formula and find the distance of A(2a, 6a) and $B(2a + \sqrt{3}a, 5a)$.
- 3. If $\sin \theta = \frac{1}{2}$ and $\cos \varphi = \frac{1}{2}$, then the value of $\theta + \varphi$ is .
- 4. What is the maximum value of $\frac{1}{\sec \theta}$?
- 5. If P(2, p) is the mid-point of the line segment joining the points A(6, -5) and B(-2, 11), find the value of.

2- Marks

- 6. Show that the points (a, a), (-a, -a) and $(-\sqrt{3} a, \sqrt{3} a)$ are the vertices of an equilateral triangle.
- 7. In the given figure find tan P cot R
- 8. If the point P(x, y) is equidistant from the points A(a + b, b a) and B(a b, a + b). Prove that bx = ay.

3- Marks(anv 2)

- 9. Find the value of k, if the points P(5,4), Q(7, k) and R(9, -2) are collinear.
- 10. Prove the following $\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A} = 1 + \tan A + \cot A$
- 11. If $\cos A = \frac{7}{25}$, find all ratios.

4- Marks (any 2)

- 12. Prove the following $(\cos ec A \sin A)(\sec A \cos A) = \frac{1}{\tan A + \cot A}$
- 13. Prove that $\sqrt{\frac{\sec A 1}{\sec A + 1}} + \sqrt{\frac{\sec A + 1}{\sec A 1}} = 2 \csc A$
- 14. Solve the following (Compulsory for all)
 - (a) Find the ratio in which the point (-3, k) divides the line-segment joining the points (-5, -4) and (-2, 3). Also find the value of k.
 - (b) If P(9a 2, -b) divides the line segment joining A(3a + 1, -3) and B(8a, 5) in the ratio 3:1. Find the values of a & b.

Practice Test Paper 3: Pair of Linear Equations in Two Variables and Triangles